• Skip to main content
  • Skip to header right navigation
  • Skip to site footer
Quantum Systems Accelerator

Quantum Systems Accelerator

Catalyzing the Quantum Ecosystem

  • Science
  • Team
    • Leadership
    • Advisory Boards
    • One-Stop Quantum Shop
  • Ecosystem
    • National QIS Research Centers
    • QCaMP
  • Publications
  • News
  • Contact Us

Our Science

QSA’s  multidisciplinary expertise and network of world-class research facilities will enable the team to co-design the solutions needed to build working quantum systems that outperform today’s computers.  The center is dedicated to a mission of pairing advanced quantum prototypes—based on neutral atoms, trapped ions, and superconducting circuits—with algorithms specifically constructed for imperfect hardware to demonstrate optimal applications for each platform in scientific computing, materials science, and fundamental physics.

QSA will deliver a series of prototypes created from these pairings to broadly explore the quantum technology trade-space, laying the basic science foundations to accelerate the maturation of commercial technologies.

Co-design Research Projects

At launch, the initial projects of QSA will bring together insights from across the team to advance the science and technology of QIS in a research environment that emphasizes co-design.


Advanced Superconducting Qubit Systems

QSA’s materials optimization and 3d processor architecture design will enable devices that maintain high coherence and fidelity as the system size scales. Coupled with novel approaches to control, QSA will produce the next generation of prototype superconducting processors.


Extensible Neutral Atom Systems

Significantly larger numbers of atoms and new methods for control and fast readout, combined with tailored algorithms, will enable simulations of the complex dynamics of matter systems and other basic science. QSA is further developing systems based on a variety of atom species, and new applications of optical tweezers.


Ion System Engineering

Novel trap designs, engineering techniques, and software will expand the system size of prototypes to hundreds of ions. New radio-frequency and optical controls will allow the efficient generation of entanglement while also increasing the system stability and extensibility.


Noise Management

Even high-quality quantum systems are susceptible to noise that introduce errors into calculations. QSA will implement techniques in noise mitigation, continuous error correction, and flag fault tolerance, adapted to the specific profiles of our platforms, to unlock their full quantum computing potential.


Algorithms Matched to Quantum Hardware

QSA will enable exploration of variational and hybrid algorithms across platforms, opening new avenues to tailor algorithms to specific platforms. This approach will also enable new techniques for physical simulations and to verify the quantum advantage of systems.


Sidebar

Recent Posts

  • National Academy of Sciences Awards Thomas Vidick with 2023 Held Prize
  • Jumpstarting the Future Quantum Workforce
  • The National Quantum Information Science Research Centers Host Second Successful Career Fair
  • La curiosidad por la informática cuántica: Cómo cinco científicos encontraron su especialización
  • The Sparks That Ignited Curiosity: How Quantum Researchers Found Their Path

Sitemap

Home

Science

Team

Ecosystem

Publications

News


This work is supported by the DOE Office of Science National Quantum Information Science Research Centers. 

Copyright © 2023 · All Rights Reserved